-
Antiviral API
- Arenavirus
- Cytomegalovirus (CMV)
- Dengue virus
- Endogenous Metabolite
- Enterovirus (EV)
- Epstein-Barr virus (EBV)
- Filovirus
- Flavivirus
- HCV Protease
- Hepatitis B Virus (HBV)
- Hepatitis C Virus (HCV)
- Herpes simplex Virus (HSV)
- HIF/HIF Prolyl-Hydroxylase
- HIV Integrase
- HIV Protease
- Human immunodeficiency Virus (HIV)
- Human papillomavirus (HPV)
- Influenza Virus
- Nipah virus
- Orthopoxvirus
- Others
- Rabies virus (RABV)
- Respiratory syncytial Virus (RSV)
- Reverse Transcriptases (RTs)
- SARS-CoV
- Tobacco mosaic virus (TMV)
- Vesicular stomatitis virus (VSV)
- Virus Protease
- West Nile virus
- Antiviral intermediates
Raltegravir-[d3] Potassium Salt
Category | HIV Integrase |
CAS | 1246816-98-7 |
Description | Labelled Raltegravir K salt. Raltegravir is a potent, selective, and orally bioavailable inhibitor of HIV integrase (IC50 = 15 nM). It is metabolized primarily by uridine diphosphate glucuronosyltransferase 1A. Raltegravir has long-term efficacy and safety in managing HIV-1 infection in adults, children, and adolescents. |
Product Information
Synonyms | N-[(4-Fluorophenyl)methyl]-1,6-dihydro-5-hydroxy-1-methyl-2-[1-methyl-1-[[(5-methyl-1,3,4-oxadiazol-2-yl)carbonyl]amino]ethyl]-6-oxo-4-pyrimidinecarboxamide-d3 Potassium Salt |
IUPAC Name | potassium;4-[(4-fluorophenyl)methylcarbamoyl]-2-[2-[(5-methyl-1,3,4-oxadiazole-2-carbonyl)amino]propan-2-yl]-6-oxo-1-(trideuteriomethyl)pyrimidin-5-olate |
Molecular Weight | 485.53 |
Molecular Formula | C20H17D3FKN6O5 |
Canonical SMILES | CC1=NN=C(O1)C(=O)NC(C)(C)C2=NC(=C(C(=O)N2C)[O-])C(=O)NCC3=CC=C(C=C3)F.[K+] |
InChI | InChI=1S/C20H21FN6O5.K/c1-10-25-26-17(32-10)16(30)24-20(2,3)19-23-13(14(28)18(31)27(19)4)15(29)22-9-11-5-7-12(21)8-6-11;/h5-8,28H,9H2,1-4H3,(H,22,29)(H,24,30);/q;+1/p-1/i4D3; |
InChIKey | IFUKBHBISRAZTF-NXIGQQGZSA-M |
Purity | ≥98% (HPLC) |
Solubility | Soluble in DMSO (Slightly), Methanol (Slightly) |
Appearance | White to Dark Brown Solid |
Storage | Store at -20°C |
In Vitro | Stable heavy isotopes of hydrogen, carbon, and other elements have been incorporated into drug molecules, largely as tracers for quantitation during the drug development process. Deuteration has gained attention because of its potential to affect the pharmacokinetic and Metabolic profiles of drugs. |
Target | HIV Integrase; HIV |