-
Antiviral API
- Arenavirus
- Cytomegalovirus (CMV)
- Dengue virus
- Endogenous Metabolite
- Enterovirus (EV)
- Epstein-Barr virus (EBV)
- Filovirus
- Flavivirus
- HCV Protease
- Hepatitis B Virus (HBV)
- Hepatitis C Virus (HCV)
- Herpes simplex Virus (HSV)
- HIF/HIF Prolyl-Hydroxylase
- HIV Integrase
- HIV Protease
- Human immunodeficiency Virus (HIV)
- Human papillomavirus (HPV)
- Influenza Virus
- Nipah virus
- Orthopoxvirus
- Others
- Rabies virus (RABV)
- Respiratory syncytial Virus (RSV)
- Reverse Transcriptases (RTs)
- SARS-CoV
- Tobacco mosaic virus (TMV)
- Vesicular stomatitis virus (VSV)
- Virus Protease
- West Nile virus
- Antiviral intermediates
Atazanavir-[d6]
Category | Human immunodeficiency Virus (HIV) |
CAS | 1092540-50-5 |
Description | Atazanavir-[d6] is the labelled analogue of Atazanavir. Atazanavir is a novel and potent azapeptide protease inhibitor that specifically inhibits the human immunodeficiency virus type 1 (HIV-1) protease enzyme with inhibition constant Ki of 66 nmol/L and also inhibits the viral replication of HIV-1 with 50% effective concentration EC50 ranging from 2.6 to 5.3 nmol/L. Atazanavir binds to HIV-1 protease preventing the cleavage of gag and gag-pol polyproteins, which results in the formation of immature virions in HIV-1-infected cells. Atazanavir has a different C-2 symmetric chemical structure and a generally greater antiretroviral potency in various HIV strains compared to other protease inhibitors, including indinavir, nelfinavir, ritonavir, saquinavir and amprenavir. |
Product Information
Synonyms | Atazanavir D6; (3S,8S,9S,12S)-12-Bis(1,1-dimethylethyl)-8-hydroxy-4,11-dioxo-9-(phenylmethyl)-6-[[4-(2-pyridinyl)phenyl]methyl]-2,5,6,10,13-Pentaazatetradecanedioic Acid 14-di(methyl-d3) Ester |
IUPAC Name | trideuteriomethyl N-[(2S)-1-[2-[(2S,3S)-3-[[(2S)-3,3-dimethyl-2-(trideuteriomethoxycarbonylamino)butanoyl]amino]-2-hydroxy-4-phenylbutyl]-2-[(4-pyridin-2-ylphenyl)methyl]hydrazinyl]-3,3-dimethyl-1-oxobutan-2-yl]carbamate |
Molecular Weight | 710.89 |
Molecular Formula | C38H46D6N6O7 |
Canonical SMILES | CC(C)(C)C(C(=O)NC(CC1=CC=CC=C1)C(CN(CC2=CC=C(C=C2)C3=CC=CC=N3)NC(=O)C(C(C)(C)C)NC(=O)OC)O)NC(=O)OC |
InChI | InChI=1S/C38H52N6O7/c1-37(2,3)31(41-35(48)50-7)33(46)40-29(22-25-14-10-9-11-15-25)30(45)24-44(43-34(47)32(38(4,5)6)42-36(49)51-8)23-26-17-19-27(20-18-26)28-16-12-13-21-39-28/h9-21,29-32,45H,22-24H2,1-8H3,(H,40,46)(H,41,48)(H,42,49)(H,43,47)/t29-,30-,31+,32+/m0/s1/i7D3,8D3 |
InChIKey | AXRYRYVKAWYZBR-ORLNJQPYSA-N |
Melting Point | 200-205°C |
Purity | ≥98%; ≥99% atom D |
Solubility | Soluble in Ethanol (Slightly), Methanol (Slightly) |
Appearance | Solid powder |
Storage | Store at -20°C |
Complexity | 1110 |
Exact Mass | 710.42700 |
In Vitro | Stable heavy isotopes of hydrogen, carbon, and other elements have been incorporated into drug molecules, largely as tracers for quantitation during the drug development process. Deuteration has gained attention because of its potential to affect the pharmacokinetic and Metabolic profiles of drugs. |
PSA | 185.18000 |
Target | HIV; HIV Protease; SARS-CoV; Cytochrome P450; P-glycoprotein; Endogenous |
XLogP3-AA | 5.6 |